Installation Instructions for Pad Mount Tie Down Kit

New Platform Rheem & Ruud Outdoor Units

Kit Numbers

RRCUTDSMK (galvanized brackets)

RRCUTDASMK (aluminum brackets)

1) Carefully review included installation drawing before beginning installation of kit. Kit must be installed per this drawing and the following instructions to maintain certification of the tie-down method.

2) Center unit on concrete pad built with minimum dimensions shown on included installation drawing. Use appropriate drawing for the unit model being installed. The applicable unit models are listed on each drawing.

3) With the bottom of “L” bracket resting on the pad, attach the four (4) “L” brackets included in kit with the appropriate quantity of #10 x ¾” self-drilling screws each included with the kit. Use two (2) screws per bracket for units 35” tall and shorter and three (3) screws per bracket for 39” tall units. Do not attach brackets to the louver panels, but rather to the posts as shown in the included installation drawing.

4) Drill a 2” deep pilot hole for the ¼” Stainless Steel ITW Buildex Tapcon screw through the hole in each “L” bracket into the pad. These holes must be at least 3.0” inches from the edge of the pad.

5) Secure “L” brackets to pad with one ¼” Stainless Steel ITW Buildex Tapcon screw per bracket.
RHEEM SALES COMPANY, INC.

WIND LOAD CERTIFICATION OF MECHANICAL UNIT CABINETRY AND STEEL/ALUMINUM TIE-DOWN CLIPS: AT GRADE MOUNTED APPLICATIONS

APPROVED DESIGN CRITERIA:

ASCE 7-10 Var-A=175 MPH
(V=110 MPH), EXPOSURE 'C', AT GRADE INSTALLATION ONLY

DESIGN NOTES:

1. THIS SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH THE FLORIDA BUILDING CODE EIGHTH EDITION (2017) AND ASCE 7-10. THIS SYSTEM MAY BE USED WITHIN AND OUTSIDE THE HIGH VELOCITY HURRICANE ZONE. THIS DESIGN CONSIDERS ASCE 7-10 SECTION 29, A.4.1 FOR "OTHER STRUCTURES - SOLID PRE-STANDING WALLS" INSTALLATIONS AT GRADE. ALL DESIGN VARIABLES ARE IN ACCORDANCE WITH ASCE 7-10 CHAPTERS 26 & 29.

GENERAL NOTES:

1. THIS SYSTEM HAS BEEN DESIGNED AND SHALL BE FABRICATED IN ACCORDANCE WITH THE FLORIDA BUILDING CODE EIGHTH EDITION (2017) AND ASCE 7-10. THIS SYSTEM MAY BE USED WITHIN AND OUTSIDE THE HIGH VELOCITY HURRICANE ZONE. THIS DESIGN IS INTENDED TO CERTIFY IMPACT RESISTANCE OF THE MECHANICAL UNIT CABINETRY.

2. NO 33.3% INCREASE IN ALLOWABLE STRESSES HAS BEEN USED IN THE DESIGN OF THIS SYSTEM.

3. DESIGN & CERTIFICATION OF THE UNIT CABINETRY IS APPROVED THROUGH "TEST REPORT" #35211-15 BY AMERICAN TEST LABS OF SOUTH FLORIDA.

4. ALL DIMENSIONS AND THE MINIMUM WEIGHT (120 LBS MINIMUM) OF MECHANICAL UNIT SHALL CONFORM TO LIMITATIONS STATED HEREIN. ALL MECHANICAL SPECIFICATIONS (CLEARANCE, TYPICAL, ETC.) SHALL BE AS PER MANUFACTURER RECOMMENDATIONS AND ARE THE EXPRESS RESPONSIBILITY OF THE CONTRACTOR.

5. TAPFINS REFERRED TO HEREIN SHALL BE ITW BUILDEX BRAND, ASTM F939 410 STAINLESS STEEL OR EQUIVALENT ONLY, INSTALLED TO 3000 PSI MIN CONCRETE. SEE ANCHOR CHART FOR ANCHOR REQUIREMENTS. ALL SHEET METAL SCREWS USED TO FASTEN BRACKETS TO MECHANICAL UNITS SHALL BE #10 (14 MIN THREADS PER INCH) ASTM F939 410 STAINLESS STEEL OR EQUIVALENT ONLY. PROVIDE (5) PITCHES MINIMUM PAST THE THREAD BASE FOR SHEET METAL SCREWS. ALL FASTENERS SHALL HAVE APPROPRIATE CORROSION PROTECTION TO PREVENT ELECTROLYSIS.

6. ALL CONCRETE SPECIFIED HEREIN IS NOT PART OF THIS CERTIFICATION. AS A MINIMUM, ALL CONCRETE SHALL BE STRUCTURAL CONCRETE 4" MIN. THICK AND SHALL HAVE MINIMUM COMRESSIVE STRENGTH OF 3000 PSI, UNLESS NOTED OTHERWISE.

7. THE CONTRACTOR IS RESPONSIBLE TO INSTALL ALL MEMBERS FROM DESIGNS TO MATERIALS TO PREVENT ELECTROLYSIS.

8. ELECTRICAL GROUND, WHEN REQUIRED, TO BE DESIGNED & INSTALLED BY OTHERS.

9. THE ADEQUACY OF ANY EXISTING STRUCTURE TO WITHSTAND SUPERIMPOSED LOADS SHALL BE VERIFIED BY THE ONSITE DESIGN PROFESSIONAL, AND IS NOT INCLUDED IN THIS CERTIFICATION EXCEPT AS EXPRESSLY PROVIDED HEREIN. NO ADDITIONAL CERTIFICATIONS OR AFFIRMATIONS ARE INTENDED.

10. THE SYSTEM DESIGNED HEREIN IS GENERIC AND DOES NOT PROVIDE INFORMATION FOR A SPECIFIC SITE. FOR SITE CONDITIONS DIFFERENT FROM THE CONDITIONS DETAILED HEREIN, A LICENSED ENGINEER OR REGISTERED ARCHITECT SHALL PREPARE SITE SPECIFIC DOCUMENTS FOR USE IN CONJUNCTION WITH THIS DOCUMENT.

11. WATER-TIGHTNESS OF EXISTING HOIST SUBSTRATE SHALL BE THE FULL RESPONSIBILITY OF THE INSTALLING CONTRACTOR. CONTRACTOR SHALL ENSURE THAT ANY REPAIRED OR ALTERED WATERPROOFING MEMBRANE IS RESTORED AFTER FABRICATION AND INSTALLATION OF STRUCTURE PROPOSED HEREIN. THIS ENGINEER SHALL NOT BE RESPONSIBLE FOR ANY WATERPROOFING OR LEAKAGE ISSUES WHICH OCCUR AFTER INSTALLATION.

12. FOR AN EXPLANATION OF EXPOSURE CATEGORIES THAT ACCOMPANY THE WIND SPEEDS USED IN THIS DOCUMENT, SEE SECTION 26.7.3 OF ASCE 7-10.
RHEEM SALES COMPANY, INC.
WIND LOAD CERTIFICATION OF MECHANICAL UNIT CABINETY AND STEEL/ALUMINUM TIE-DOWN CLIPS: AT GRADE MOUNTED APPLICATIONS

APPROVED DESIGN CRITERIA:

ASCE 7-10 Wind = 175 MPH

(60-136 MPH) EXPOSURE D
AT GRADE INSTALLATION ONLY

DESIGN NOTES:

THIS SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH ASCE 7-10 AND THE FLORIDA BUILDING CODE SIXTH EDITION (2017) FOR USE WITHIN AND OUTSIDE THE HIGH VELOCITY HURRICANE ZONE. THE DESIGN CRITERIA CONSIDERS ASCE 7-10 SECTION 29.4.1 FOR "OTHER STRUCTURES - SOLID FREESTANDING WALLS" INSTALLATIONS AT GRADE. ALL DESIGN VARIABLES ARE IN ACCORDANCE WITH ASCE 7-10 CHAPTERS 26 & 29.

GENERAL NOTES:

1. THIS SYSTEM HAS BEEN DESIGNED AND SHALL BE FABRICATED IN ACCORDANCE WITH THE REQUIREMENTS OF THE FLORIDA BUILDING CODE SIXTH EDITION (2017) & ASCE 7-10. THIS SYSTEM MAY BE USED WITHIN AND OUTSIDE THE HIGH VELOCITY HURRICANE ZONE. THIS DESIGN IS NOT INTENDED TO CERTIFY IMPACT RESISTANCE OF THE MECHANICAL UNIT CABINETY.

2. NO 33-1/3% INCREASE IN ALLOWABLE STRESS HAS BEEN USED IN THE DESIGN OF THIS SYSTEM.

3. DESIGN & CERTIFICATION OF THE UNIT CABINETY IS APPROVED THROUGH TEST REPORT #2323.01.15 BY AMERICAN TEST LAB OF SOUTH FLORIDA.

4. ALL DIMENSIONS AND THE MINIMUM WEIGHT (190 LB MINIMUM) OF MECHANICAL UNIT SHALL CONFORM TO LIMITATIONS STATED HEREIN. ALL MECHANICAL SPECIFICATIONS (CLEAR SPACE, TONNAGE, ETC.) SHALT BE AS PER MANUFACTURER'S RECOMMENDATIONS AND ARE THE EXPRESS RESPONSIBILITY OF THE CONTRACTOR.

5. TAPCONS REFERRED TO HEREIN SHALL BE #10 BOLTS, ASTM F933 410 STAINLESS STEEL OR EQUIVALENT ONLY. INSTALLED TO 3000 PSI MIN CONCRETE. SEE ANCHOR SCHEDULE FOR ANCHOR REQUIREMENTS. ALL SHEET METAL SCREWS USED TO FASTEN BRACKETS TO MECHANICAL UNIT SHALL NOT BE #10 (14 MHN THROUSHE PER INCH) ASTM F933 410 STAINLESS STEEL OR EQUIVALENT ONLY. PROVIDE 3 PITCHES MINIMUM PAST THE THREAD FLANGE FOR SHEET METAL SCREWS. ALL FASTENERS SHALL HAVE ADEQUATE CORROSION RESISTANCE TO PREVENT ELECTROLYSIS.

6. ALL CONCRETE SPECIFIED HEREIN IS NOT PART OF THIS CERTIFICATION, AS A MINIMUM, ALL CONCRETE SHALL BE STRUCTURAL CONCRETE 4" THICK AND SHALL HAVE MINIMUM COMPRESSIVE STRENGTH OF 3000 FSI, UNLESS NOTED OTHERWISE.

7. THE CONTRACTOR IS RESPONSIBLE TO INSULATE ALL MEMBERS FROM DISPLACED MATERIALS TO PREVENT ELECTROLYSIS.

8. ELECTRICAL GROUND, WHEN REQUIRED, TO BE DESIGNED & INSTALLED BY OTHERS.

9. THE ADEQUACY OF ANY EXISTING STRUCTURE TO WITHSTAND SUPERIMPOSED LOADS SHALL BE VERIFIED BY THE ONSITE PROFESSIONAL AND IS NOT INCLUDED IN THIS CERTIFICATION EXCEPT AS EXPRESSLY PROVIDED HEREIN, NO ADDITIONAL CERTIFICATIONS OR AFFIRMATIONS ARE INTENDED.

10. THE SYSTEM DESCRIBED HEREIN IS GENERIC AND DOES NOT PROVIDE INFORMATION FOR A SPECIFIC SITE, FOR SITE CONDITIONS DIFFERENT FROM THE CONDITIONS DESCRIBED HEREIN, A LICENSED ENGINEER OR REGISTERED ARCHITECT SHALL PREPARE SPECIFICATIONS AND DOCUMENTS FOR USE IN CONJUNCTION WITH THIS DOCUMENT.

11. WATER-TIGHTNESS OF EXISTING HOST SUBSTRATE SHALL BE THE FULL RESPONSIBILITY OF THE INSTALLING CONTRACTOR. CONTRACTOR SHALL ENSURE THAT ANY REMOVED OR ALTERED WATERPROOFING MEMBRANE IS RESTORED AFTER FABRICATION AND INSTALLATION OF STRUCTURE PROMPTED HEREIN. THIS INSTALLATION IS NOT RESPONSIBLE FOR ANY WATERPROOFING OR LEAKAGE ISSUES WHICH MAY OCCUR AS WATER-TIGHTNESS SHALL BE THE FULL RESPONSIBILITY OF THE INSTALLING CONTRACTOR.

12. FOR AN EXPLANATION OF EXPOSURE CATEGORIES THAT ACCOMPANY THE WIND SPEEDS USED IN THIS DOCUMENT, SEE SECTION 26.7.3 OF ASCE 7-10.